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THE SHOCK HUGON1OT OF MINERAL OIL

ABSTRACT

The shock Hugoniot of heavy mineral oil (density = 0.87g/cc) has

been determined by plane shock wave experiments. A charged capacitor

technique was used to measure shock velocities through specimens of

mineral oil. Shock velocities through polymethyl methacrylate reference

specimens were measured by a shock-induced polarization technique, and

impedance calculations were performed to establish the Hugoniot equation

of state in mineral oil. Within the pressure range from 15 to 150 kilo-

bars, the Hugoniot curve of heavy mineral oil was found to be represented

by the linear relationship U=2.19 + 1.52u, where U is shock velocity,

u is particle velocity, and velocity units are mm/usec.
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I. INTRO1)UCTION

Mineral oil has been used in shock wave experiments to eliminate
1*electrically noisy air shock. It is particularly well suited to this

application because it produces a very small shock-induced electrical
2

signal, and therefore does not contribute to other electrical signals.

The Ballistic Research Laboratories have also used heavy mineral oil

(1NO)3 to improve impedance matching at interfaces, and as a shock trans-

mitting medium. In the latter application, the liugoniotof HMO was

needed to establish shock pressures.

The Hugoniot of lIMOwas determined using the impedance match tech-
4

nique. In this technique, specimens of llMOand polymethyl methacrylate

(PMMA)5 were placed on a metal plate through which an explosively pro-

duced plane shock wave was transmitted. Transit times of shock waves

through the PMMA reference specimens were measured from the shock-induced

polarization signa16 and used to calculate the average shock velocities.

The polarization signal from HMO is very small, so a charged-capacitor
7

technique was used to measure the shock-wave transit times from which

average shock velocities were calculated. Hugoniot points for HMO were

then obtained by impedance calculations. This report describes the

experimental details and presents the Hugoniot data obtained for HMO.

11. EXPERIMENTAL TECHNIQUES

A. Shock Pressures

Plane shock waves were generated by the explosive train shown sche-

matically in Figure 1. This explosive train consisted of a 10-cm dia-

meter composition B-TNT plane wave lens and a 10-cm diameter by 2.5-cm

thick base charge of TNT, composition B, or 75/25 Octol. The plane

shcck wave from the explosive was transmitted to the test specimens

through a buffer plate. The higher shock pressures were produced by

using different base charges on 0.6-cm thick buffer plates of AZ31B

magnesium, 2024 aluminum, or A.S.T.M. B16 brass. The low shock pressures
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Figure 1. Experimental Arrangement for SimultaneousMeasurement of Shock
Velocities in Mineral Oil and Polymethyl Methacrylate
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were produced by using a TNT base charge on a laminated bufl”erwhich re-

duced the pressures by impedance mismatch between laminations. The lam-

inated buffer consisted of three 0.6cm thick laminations, brass-x-brass,

where x was low densitypolyethylene or AZ31B magnesium.

These systems produce shock waves

seconds over diameters of two to three

ment is designed to use only the plane

wave is delivered normally incident to

practice some of the waves will arrive

is assessedand compensated for by measurements of signal risetime, as

described in Section III.

which are plane to 0.1 micro-

and one-half inches. Each experi-

portion of the wave. The plane

the buffer-sample interface. In

with measurable obliquity. This

B. ~erimental Arrangement for Mineral Oil Measurements

Shock velocity through mineral oil was measured by a charged capac-

itor technique. The test capacitor sho~,nin Figure 2 consisted of a

1.27-cm diameter brass second electrode suspended O.10-cm from the buffer

plate which served as the first electrode. The HMO sample was introduced

into the interelectrode gap and was retained by capillary action. The

test capacitor was charged to a potential of 475 volts. A 0.01 micro-

farad capacitor, in parallel with the test capacitor, held the applied

voltage essentially constant during an experiment. The test capacitor

was connected in series with a coaxial cable terminated by its character-
8

istic impedance at the inp’~tof a fast rise oscilloscope. Under static

conditions, no current flowed in the circuit after the capacitor was

initially charged. When the explosive charge was detonated, a plane

shock wave passed through the buffer plate and entered the HMO, com-

pressing it and increasing the dielectric constant. This increased the

capacitance of the test capacitor and caused a charging current to flow

in the circuit. The resulting voltage drop across the terminating

resistor was recorded with an oscilloscope.

As shown in Reference 7, the signal profile may be calculated using

the equation

13



(1)
VEOkOAIU-(kO/k)(U-u)]

I=
{XO-[U-(kO/k)(U-u)]t}2

where V is the applied voltage, E~ 1s the permittivity of free space

(8.854 X 10-12 F/m), A is the area, k. is the relative dielectric constant

at zero pressure, k is the reli~tivedielectric constant of the shock com-

pressed dielectric, X. is the initial thickness, and t is the time mea-

sured from the entry of the shock front into the dielectric. The dielec-

tric constant under shock compression may be roughly estimated by the

Clausius-Mosotti equation, assuming constant polarizability. The Clausius-

Mosotti

(7) has

diets a

signal.

used to

equation was used instead of the Drude equation, which Hauver

shown to be more appropriate for polyethylene, because it pre-

larger change in dielectric constant and therefore a larger

This increases the safety factor in the estimate of signal size

set the oscilloscope and reduces the chance of an off-screen sig-

nal. It should be noted that the calculation assumes a three-electrode

parallel plate capacitor. The simple, unguarded capacitor design used

in these experiments is not suitable for quantitative measurements of

the dielectric constant under shock compression, since it provides no pro-

tection from edge effects. Nevertheless, the calculation provides a rough

estimate of signal size, and the unguarded design does provide signals

which may be readily interpreted and measured for shock transit time,

which is the only value needed for the Hugoniot measurement.

c. Experimental Arrangement for Polymethyl Methacrylate Measurements

The shock velocity through the PMMA5 reference specimens was measured

by a shock-induced polarization technique.6 The experimental arrangement

is shown in Figure 3. A PMMA specimen, 0.72cm in diameter by O.10cm

thick, was placed in contact with the buffer plate which served as the

first electrode. The other surface of the PMMA specimen was covered with

a spring-loaded brass disc which served as the second electrode. A

grounded aluminum ring was used as electrical shielding. The electrodes

were connected to an oscilloscope by a coaxial cable which was terminated

with its characteristic impedance at the oscilloscope input. When the

14
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plane shock wave entered the PM4A specimen from the first electrode,

polarization was induced and a displacement current charged the capaci-

tance in the circuit. The voltage drop across the cable termination was

displayed on the oscilloscope. The shock transit time was obtained from

the duration of the polarization and was used to calculate the average

shock velocity.

III. SIGNAL MEASUREMENT AND ANALYSIS

Typical signals from HMO and PMMA are shown in Figure 4. Despite

the difference in the generating mechanism, the two types of signals

appear similar and were measured the same way.

A sharp initial voltage rise occurred at time tO when the shock

wave entered the specimen. The risetime tl-tO resulted from tilt and/or

curvature of the incident shock front. After time tl, the signal profile

increased slowly until time t
2’

when the shock wave arrived at the sec-

ond electrode. The apparent transit time t2-t0 was corrected for rise-

time, and was used with the measured thickness to calculate the average

shock velocity through the specimen. Since the shock wave undergoes

attenuation as it passes through the samples, the calculated velocity will

be slightly lower than that at the buffer-sample interface. The HMO and

PMMA samples are the same thickness and the shock waves in both samples

will be attenuated by comparable amounts. The net effect will be to

shift the measured point a short distance down the U -u curve.
SP

The

attenuation in PM has been shown (reference 6) to be about O.S%/mm.

The design of the experiment therefore assures that any error from this

source is very small.

A risetime correction is necessary when the shock front is obliquely

incident, Because of pressure release at the free lateral boundary of

the specimen, times to and t2 relate to shock paths that originate from

different points along the incident shock front, necessitating a correc-

tion ‘0 ‘2-to”
An obliquely incident shock front is considered to be

16





the more general condition encountered, so the risetime correction is

always applied when the signal risetime exceeds the oscilloscope rise-

time. The RC response of the circuit is less than the instrument rise-

time.

The corrected transit time for a plane but obliquely incident shock

wave has been shown to be (see Reference 6).

T = (t2-tO)-At(;) (2)

where T is corrected transit time, At = t -t
1 o’

w is the diameter of the

sample and r is the

sample to the point

trode).

The curvature,

curvature (the radial distance from the edge of the

where the shock

r, for PMMA has

wave first strikes the rear elec-

been measured6 and may be applied

directly. The curvature for HMO has not been measured and was estimated.

This was done by first calculating uncorrected values for the Hugoniot

equation in the form U =a+bu, where a and b are constants. The approxi-

mate sound velocity, c, of the lateral release wave at each experimental

pressure was then calculated using Jacobs’ approximationg

~ ~ u-u
~(U-bu) . (3)

.
The approximate curvature, r-, was then calculated from the geometric

relationship of the compression and lateral release waves. As shown in

reference 6, the true sound velocity is given by

PO 2 1/2
c ‘u[(~2+ (~) 1

where c is the sound velocity and x
o
is the initial thickness of the HMO

specimen. This equation may be written

c=u[(q2+( ~)211’2
‘o

18



or, solving for r,

2 1/2
r = xO[(~)2- (~) 1

Since the value calculated for c by Jacobs equation is an approximation,
*
c, the value calculated for the curvature r, will be r*, the approximate

curvature ** ? ,, . 2 1/2
r = Xo[(: )’- (y) 1

The approximate curvature for the mineral oil

to calculate corrected transit times and shock

corrections were small [At (&: l%(t2-tO)] so

. (4)

was used in Equation (2)

velocities for HMO. The

the approximations involved

do not greatly affect the results.

The Hugoniots of PMMA and the buffer plate metals are well established
10

in the pressure ranges studied here. The pressure and particle velocity

in the PMMA were calculated from the shock velocity, using the relation-

ship U = 2.695 + 1.538u, and the conservation relation P = p. UU.

The method of impedance matching was used to determine the buffer

plate conditions. The release adiabat of the buffer material must pass

through the previously determined PMMA point. This locates the buffer

pressure and particle velocity point and identifies the locus of states

which can be attained in a material in contact with the buffer plate.

The reflected buffer Hugoniot was used as an approximation for the buffer

adiabat. Since the PMMA and HMO Hugoniots are in close proximity, this

is a good approximation. The HMO Hugoniot point is found at the inter-

section of the reflected buffer Hugoniot and a line of slope P. U (mineral

oil), where PO is the initial density of the HMO.

The major sources of error in the experiments reside in the physical

measurements of the set-up components (estimated at *1%). in the measure-

ments of the film records

the effects of shock wave

and the time error due to

less than 2%.

of the oscilloscope traces (estimated at tl%).

attenuation (estimated to be less than 0.5%)

shock wave obliquity, which is estimated to be

19



IV. RESULTS

The experimental data are given in Table I and are shown graphically

in Figure 5. A linear least squares fit of the data gives the relation-

ship U = 2.18 + 1.53u, a = .076. A Hugoniot data table based upon this

equation is given in Table II.

20
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Velocity-Particle Velocity Plane.

21

3



‘o

nun

TABLE I. Experi]lentalData for Shock Velocity and
Particle Velocity in Heavy Mineral Oil

0.960

0.945

0.986

0.940

0.958

0.945

‘2-to

usec

0.327

0.270

0.227

0.189

0.168

0.149

‘2-to

corrected
psec

0.326

0.269

0.226

0.187

0.166

0.148

u

nnn/usec

2.94

3.51

4.36

5.03

5.74

6.40

u

mm/psec

0.55

0.86

1.36

1.88

2.32

2.81
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TABLE II. Shock-Wave Compression Data for
heavy Minerai Oil

u
mm/Psec

.0000

.1000

.2000

.3000

.4000

.5000

.6000

.7000

.8000

.9000
1.0000
1.1000
1.2000
1.3000
1.4000
1.5000
1.6000
1.7000
1.8000
1.9000
2.0000
2.1000
2.2000
2.3000
2.4000
2.5000
2.6000
2.7000
2.8000
2.9000
3.0000

u
mm/Psec
2.1856
2.3377
2.4897
2.6417
2.7937
2.9457
3.0977
3.2497
3.4018
3.5538
3.7058
3.8578
4.0098
4.1618
4.3139
4.4659
4.6179
4.7699
4.9219
5.0739
5.2259
5.3780
5.5300
5.6820
5.8340
5.9860
6.1380
6.2901
6.4421
6.5941
6.7461

P
kilobars

.00
2.03
4.33
6.89
9.72
12.81
16.17
19.79
23.67
27.82
32.24
36.91
41.86
47.07
52.54
58.28
64.28
70.54
77.07
83.87
90.93
98.25
105.84
113.69
121.81
130.19
138.84
147.75
156.92
166.36
176.07

v/v.

1.0000
.9572
.9196
.8864
.8568
.8302
.8063
.7846
.7648
.7467
.7301
.7148
.7007
.6876
.6754
.6641
.6535
.6436
.6342
.6255
.6172
.6095
.6021
.5952
.5886
.5823
.5764
.5707
.5653
.5602
.5553
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The shock Hugoniot of heavy mineral oil (density = 0.87g/cc) has been

determined by plane shock wave experiments. A charged capacitor technique

was used to measure shock velocities through specimens of mineral oil.

Shock velocities through polymethyl methacrylate references specimens were

measured by a shock-induced polarization technique, and impedance calcula-

tions were performed to establish the Hugoniot equation of state in mineral

oil. Within the pressure range from 15 to 150 kilobars, the Hugoniot Curve

of heavy mineral oil was found to be represented by the linear relationship

U = 2.19 + 1.52u, where U is shock velocity, u is particle velocity, and

velocity units are mm/psec.
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